Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress.

نویسندگان

  • Nicole Endlich
  • Masataka Sunohara
  • Wilfried Nietfeld
  • Eryk W Wolski
  • Daniel Schiwek
  • Bettina Kränzlin
  • Norbert Gretz
  • Wilhelm Kriz
  • Holger Eickhoff
  • Karlhans Endlich
چکیده

Glomerular hypertension is a major determinant advancing progression to end-stage renal failure. Podocytes, which are thought to counteract pressure-mediated capillary expansion, are increasingly challenged in glomerular hypertension. Studies in animal models of glomerular hypertension indicate that glomerulosclerosis develops from adhesions of the glomerular tuft to Bowman's capsule due to progressive podocyte loss. However, the molecular alterations of podocytes in glomerular hypertension are unknown. In this study, we determined the changes in gene expression in podocytes induced by mechanical stress in vitro (cyclic biaxial stretch, 0.5 Hz, 5% linear strain, 3 days) using cDNA arrays (6144 clones). Sixteen differentially regulated genes were identified, suggesting alterations of cell-matrix interaction, mitochondrial/metabolic function, and protein synthesis/degradation in stretched podocytes. The transcript for the matricellular protein osteopontin (OPN) was most strongly up-regulated by stretch (approximately threefold). By reverse transcriptase-polymer chain reaction, up-regulation of OPN mRNA was also detected in glomeruli of rats treated for 2.5 wk with desoxycorticosterone acetate-salt, an animal model of glomerular hypertension. In cultured podocytes, OPN coating induced a motile phenotype increasing actin nucleation proteins at cell margins and reducing stress fibers and focal adhesions. Intriguingly, additional OPN coating of collagen IV-coated membranes accelerated stretch-induced actin reorganization and markedly diminished podocyte loss at higher strain. This study delineates the molecular response of podocytes to mechanical stress and identifies OPN as a stretch-adapting molecule in podocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical stress enhances CD9 expression in cultured podocytes.

Elevated glomerular pressure represents a high risk for the development of severe kidney diseases and causes an increase in mechanical load to podocytes. In this study, we investigated whether mechanical stress alters gene expression in cultured podocytes using gene arrays. We found that tetraspanin CD9 is significantly upregulated in cultured podocytes after mechanical stress. The differential...

متن کامل

Mechanical stress and glucose concentration modulate glucose transport in cultured rat podocytes.

BACKGROUND Recent studies show that mechanical stress modifies both morphology and protein expression in podocytes. Ambient glucose is another factor modulating protein synthesis in these cells. In diabetes, podocytes experience elevated glucose concentrations as well as mechanical strain generated by high intracapillary pressures. Both these factors are responsible for podocyte injury, leading...

متن کامل

OPN deficiency results in severe glomerulosclerosis in uninephrectomized mice.

Osteopontin (OPN) expression has been reported to be elevated in experimental models of renal injury such as arterial hypertension or diabetic nephropathy finally leading to focal segmental glomerulosclerosis (FSGS). FSGS is characterized by glomerular matrix deposition and loss or damage of podocytes that represent the main constituents of the glomerular filtration barrier. To evaluate the rol...

متن کامل

Curcumin ameliorates Podocytic adhesive capacity damage under mechanical stress by inhibiting miR-124 expression.

BACKGROUND/AIMS Curcumin, a kind of plant polyphenolic compound, has been recently discovered to have renoprotective effects on diabetic nephropathy (DN). Podocyte can respond to various injuries including mechanical stress secondary to DN. Our previous study showed that podocyte miR-124 expression was up-regulated accompanied with podocytic adhesive capacity damage in vitro and in vivo. We hyp...

متن کامل

Spironolactone promotes autophagy via inhibiting PI3K/AKT/mTOR signalling pathway and reduce adhesive capacity damage in podocytes under mechanical stress

Mechanical stress which would cause deleterious adhesive effects on podocytes is considered a major contributor to the early progress of diabetic nephropathy (DN). Our previous study has shown that spironolactone could ameliorate podocytic adhesive capacity in diabetic rats. Autophagy has been reported to have a protective role against renal injury. The present study investigated the underlying...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 16 13  شماره 

صفحات  -

تاریخ انتشار 2002